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Summary

We use data on lymphoma in families of Hodgkin lymphoma (HL) cases from the Swedish Family Cancer Database
(Hemminki et al. 2001) to illustrate survival methods for detecting familial aggregation in first degree relatives of
case probands compared to first degree relatives of control probands, from registries that permit sampling of all cases.
Because more than one case may occur in a given family, the first degree relatives of case probands are not necessarily
independent, and we present procedures that allow for such dependence. A bootstrap procedure also accommodates
matching of case and control probands by resampling the matching clusters, defined as the combined set of all first
degree relatives of the matched case and control probands. Regarding families as independent sampling units leads
to inferences based on “sandwich variance estimators” and accounts for dependencies from having more than one
proband in a family, but not for matching. We compare these methods in analysis of familial aggregation of HL and
also present simulations to compare survival analyses with analyses of binary outcome data.

Keywords: Familial Correlation, Cluster Data, Marginal Model, Bootstrap, Non-Hodgkin Lymphoma,
Matched Design

Introduction

Detecting familial aggregation of disease can provide an
important clue to genetic etiology. This paper describes
methods used to analyze data from the Swedish Family-
Cancer Database (Hemminki et al. 2001a) which
contains information on family structure and cancer
outcomes, obtained from the Swedish Cancer Reg-
istry, for more than 10 million individuals. Multigen-
erational disease registries afford an opportunity to de-
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tect familial aggregation but require special analytical
tools.

One approach to assessing familial aggregation is
to compute a quantity similar to a standardized inci-
dence ratio by dividing the number of diseased first de-
gree relatives of diseased individuals (probands) by the
number expected based on standard population rates
(Hemminki et al. 2001b, 2001c). This analysis should
take into account the fact that every case in a family
serves as a proband, which affects variances of the es-
timates (Goldgar et al. 1994). A potential disadvantage
of this approach is that the standard population rates
may not apply to the registry population, yielding biased
results.
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An internal comparison that avoids reliance on exter-
nal rates can be based on the ratio of risk in first degree
relatives of case probands to that in the first degree rel-
atives of a random sample of control probands from the
registry. Liang (1991) discussed such an analysis of sur-
vival data, namely the ages of onset of disease in first
degree relatives of unrelated cases and controls. Even
though the cases and controls are unrelated, allowance
needs to be made for the fact that the relatives’ ages at
disease onset may be correlated within families (Liang,
1991).

We adapt the methods of Liang (1991) to the reg-
istry setting, in which every case serves as a proband.
Because some families have more than one case, the
case probands cannot be regarded as unrelated or in-
dependent as in Liang’s work. In the design described
below, case probands were matched to unaffected con-
trol probands. We present a bootstrap procedure that
accounts both for the potential relatedness of case
probands, and for the matching of controls, to calcu-
late confidence intervals and test for aggregation.

An alternative analysis treats families sampled from the
Swedish Family-Cancer Database, either through case
probands or through control probands, as independent
sampling units. This analysis accounts for having fam-
ilies with multiple probands but not for matching. We
compare the resulting analysis based on a robust “sand-
wich” estimate of variance with the previously men-
tioned bootstrap analysis.

We also compare these survival analyses to a sim-
pler analysis that treats the disease outcomes of first de-
gree relatives of probands as binary random variables.
We illustrate and compare these methods on Hodgkin
Lymphoma (HL) data from the Swedish Family-Cancer
Database, and on simulated data. The simulations also
give an indication of how large shared frailties need to
be in order to induce an appreciable relative risk of dis-
ease, comparing relatives of case probands to relatives of
control probands.

Materials and Methods

Data

The Swedish Family-Cancer Database was constructed
as described by Hemminki et al. (2001a). Briefly, Statis-

tics Sweden maintains a multigenerational register con-
sisting of individuals born since 1932, linked to their
biological parents. This database now contains 10.2 mil-
lion individuals with defined family structures and has
been merged with the Swedish Cancer Registry (1958-
1998). Thus, the familial distribution of all registered
cancers can be assessed. The database has also been
merged with census databases to obtain some demo-
graphic information, and with the death notification
database to incorporate vital status on all individuals.

The data on individuals who had no children born
in or after 1932, and the data on all offspring who
died before 1960, are missing from the Swedish Family-
Cancer Database. Among offspring who died before
1991, about half are not linked to their parents. 75%
of all tumors registered in the Swedish Cancer Registry
are included in the Family-Cancer Database. The can-
cer incidence rates (up to age 70) in the Family-Cancer
Database are nearly identical to those in the Cancer
Registry.

To study lymphomas in relatives of HL cases, we se-
lected all cases of HL from the Swedish Family-Cancer
Database. For each case, we randomly sampled two
cancer-free controls, matched for gender, year of birth,
and county of residence, from the Swedish Family-
Cancer Database. County of residence was used as a
matching criterion to allow for regional variability over
time in reporting of cancers to the central registry. For
each case and control, all first degree relatives were in-
cluded in the data set. We call the cases and sampled
controls “probands”.

All members in the Swedish Family-Cancer Database
have been partitioned into families, consisting of in-
dividuals who are related by blood relationships docu-
mented by data in the Swedish Family-Cancer Database.
Every diseased individual belongs to one such fam-
ily, though a family may contain more than one case
proband. If there are multiple probands in the same fam-
ily, some of their first degree relatives can be present in
the data set multiple times. The most extreme example
is a family with two siblings who are eligible probands.
This family is duplicated in the data set, each time with
a different sibling chosen as the proband. For any other
type of relationship among probands usually some, but
not all, of the relatives are replicated. A family or parts
of it could also be represented in the data more than
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once because of multiple control probands, or control
and case probands, in the same family. The replication of
individuals in the cluster data construction is needed to
obtain unbiased estimates of risks in the first degree rel-
atives of all case probands and of their matched control
probands.

In the next section we describe how to account for
these various types of dependencies in the statistical pro-
cedures.

Statistical Methods

The basic statistical approach is to compare measures of
disease risk in first degree relatives of all case probands
in the population with those in first degree relatives of
matched control probands.

Marginal Survival Model

First we present a method that uses ages at cancer onset
for the relatives of the probands. We are interested in
the population average effect of the proband’s disease
status on the hazard of disease in first degree relatives,
and therefore use a marginal model of the hazard for the
jth individual in matching cluster i,

λi j (ti j |Xi j , Zi j ) = λ0(ti j ) exp(βXi j + γ Zi j ) (1)

where t ij is the age of disease onset or censoring, Zij =
1 if the individual is a first degree relative of a case
proband, Zij = 0 if the individual is a first degree relative
of a control proband, and Xij is a vector of measured
covariates. In the examples, Xij denotes gender, and λ0

denotes the arbitrary baseline hazard function. For each
individual the outcome data consist of (t ij, δi j ), where
the binary variable δi j indicates whether an individual
developed disease, δi j = 1, or not, δi j = 0, at age t ij.

Our data are also left truncated because of restric-
tions in cancer registry coverage in the Swedish Family-
Cancer Database. Thus, a person is at risk in a partial
likelihood analysis of the hazard (1) only at or beyond
the age of left truncation; namely the individual’s age
in 1958 if the person is born before 1958, and 0 (no
truncation) if the person is born in 1958 or after. The
main aim of the analysis is to estimate and test the null
hypothesis H0 : γ = 0 of no association between risk
and the proband’s disease status. Note that we only use
the proband’s disease status but not his or her failure time
in the model.

The parameters in the survival model (1) are esti-
mated under a “working independence” assumption,
using Proc Phreg, SAS 8.0. The left truncation is taken
into account with the entrytime statement.

A matching cluster of individuals to be analyzed ac-
cording to equation (1) is defined as follows. Consider a
family that contains one or more case probands. All the
first degree relatives of each case proband are included in
the cluster, and, if an individual is a first degree relative
of more than one proband, that person is entered into
the cluster once for each such first degree relationship to
a case proband. The cluster also contains the first degree
relatives of each control proband who was matched to
the case proband(s) in the family. Figure 1 illustrates the
construction of such a matching cluster, ignoring repli-
cation of first degree relatives. We defined a matching
cluster in this way to allow for correlations among all
first degree relatives of all probands in a family, as well as
with first degree relatives of the matched control. This
is analogous to treating the pair as independent sam-
pling units in data for a paired t-test. This definition of
a matching cluster also allows for the repeated use of a
relative, once for each proband to which he or she is
related, in order to obtain unbiased estimates of rela-
tive risk for first degree relatives of case versus control
probands.

Notice that matching clusters as defined in Figure 1
may overlap. For example, individual i in Figure 1 is a
case proband for his family. He therefore induces another
matching cluster containing individuals C1, f, g and h
as first degree relatives, together with the first degree
relatives of the control probands (not shown) matched
to case i. This second cluster thus includes individuals
f, g and h in common with the cluster in Figure 1.
However, there is little chance of overlap in our data in
clusters defined as in Figure 1, and we therefore treat
such matching clusters as independent sampling units in
the bootstrap and jackknife procedures described next,
to compute the covariance of the estimates.

Bootstrapping Matching Clusters

Consider the set of matching clusters defined as in
Figure 1 as the combined set of all first degree rela-
tives of the matched case and control probands in fami-
lies that contain at least one case proband. Sample these

500 Annals of Human Genetics (2004) 68,498–508 C© University College London 2004



Testing familial aggregation in registry data

Figure 1 A Matching Cluster of Individuals in the Analysis
File. Case probands P1 and P2 in the family lead to the
inclusion of first-degree relatives (a,b,c) and (a,b,c,d,e)
respectively in the matching cluster. Note that a, b and c are
included twice. The corresponding matched controls C1 and
C2 lead to the inclusion of individuals (f,g,h,i) and (j,k)
respectively. Solid symbols denote diseased individuals, circles
females, and squares males. Arrows indicate matching. Note that
because individual i is a case, he will form the basis of another
matching cluster based on his family.

clusters with replacement in bootstrap replication b and
obtain the estimates (β̂b , γ̂b ) from this sample. Repeat
for bootstrap samples b = 1, 2, . . . , B. The upper and
lower 2.5% percentiles of the bootstrap distribution are
used to produce 95% confidence intervals on the param-
eters. Alternative confidence intervals could be based
on γ̂ ± 1.96ŜE(γ̂ ), where the estimated standard error
ŜE(γ̂ ) is the square root of the sample variance com-
puted from γ̂b for b = 1, 2, . . . , B. One can also es-
timate the variance from a jackknife as

∑
(γ̂(i ) − γ̄ ),

where γ̂(i ) is the estimate obtained with cluster i ex-
cluded from the sample, and γ̄ is the mean of the γ̂(i ).
As there are thousands of matching clusters in our data,
the jackknife computations were too slow to be practi-
cal, and we do not present results for this. In the studies
below we used B = 1000 bootstrap samples.

Sandwich Estimates of Variance Based on
Families as Independent Sampling Unit

An alternative approach to variance estimation regards
families, which are mutually exclusive, as indepen-
dent sampling units, rather than the previously defined

matching clusters. For each selected family, the analysis
data set included each relative once for every proband
in the family to which he or she was related in the first
degree. The sandwich estimate of the covariance ma-
trix (Wei et al. 1989) was obtained from a SAS/IML
program, which performed matrix multiplication using
the score residuals from dfbeta from Proc Phreg, that
were sorted and averaged by family as input (Therneau
& Hamilton, 1997).

Confidence intervals were based on γ̂ ± 1.96ŜE(γ̂ )
and two-sided p values were estimated from asymptotic
normal theory based on γ̂ and ŜE(γ̂ ). While the sand-
wich variance does not fully account for the matched
design, it is computationally very simple.

Marginal Model for Binary Diseases Status

For rare outcomes, the marginal survival model pre-
sented in the previous section is closely related to a
marginal model of binary outcomes analyzed with gen-
eralized estimating equations (GEE). We thus compared
the results of the survival analyses with those obtained
from a GEE model that treats the outcomes as binary
random variables, as outlined by Liang & Beaty (1991).
As in the sandwich method for survival analysis we treat
the family as the independent sampling unit. Again, Xij,
which includes an intercept, stands for measured covari-
ates for relative j in family i, and Zij denotes the indicator
of the proband’s disease status. Relatives were replicated
in the family’s analysis file once for each first degree re-
lationship to a proband in a family. The disease status of
the jth relative of the ith family is Yij, where Yij = 1 if
the individual develops disease and 0 otherwise, and is
modelled using logistic regression

P (Yi j = 1|Xi j , Zi j ) =
exp(βXi j + γ Zi j )

1 + exp(βXi j + γ Zi j )
. (2)

To accommodate the left truncation in the data we in-
cluded years at risk, defined as age at censoring or age
minus the age of the individual in 1958 (the truncation
date) into the model as one of the covariates X . While
this procedure does not adjust for the left truncation
completely, it is an appropriate adjustment if the dis-
tribution of ages among case relatives is similar to the
age distribution among control relatives. This assump-
tion is reasonable, because the probands were matched
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on age. As in the survival methods above, we also in-
cluded gender as a covariate X . The null hypothesis of
no aggregation again corresponds to H0 : γ = 0. The
model parameters were estimated under a working in-
dependence covariance structure to make the odds ratio
estimates from the GEE model comparable to the hazard
ratio estimates from the marginal survival model. The
analysis was performed with Proc Genmod, SAS 8.0.
The 95% confidence interval on γ was γ̂ ± 1.96ŜE(γ̂ ),
where ŜE(γ̂ ) denotes the square root of the sandwich
estimate of var(γ̂ ), and two-sided p values were com-
puted using asymptotic normal theory.

Simulation Study

We used simulations to study two aspects of the pro-
cedures described previously. We assessed the efficiency
of the survival approach compared to the binary model,
both with sandwich estimates of variance, and exam-
ined how strong familial correlation has to be in order
to induce strong aggregation, measured by the hazard
ratio associated with proband status.

To create dependency within a family we simulated
multivariate survival data from a shared frailty model.
This random family frailty multiplies the hazard func-
tion for members of a family, resulting in individuals
who share the same baseline hazard within a family, but
have different baseline hazards from members of differ-
ent families, inducing intrafamilial correlation. Letting
W i denote the frailty term for the ith family, the con-
ditional hazard function of individual j in the ith family
given W i was

λi j (ti j |Xi j ) = Wi λ0(ti j ) exp(βXi j ). (3)

We assumed that λ0(t ij) = λ0, a constant, and β = 0.
Then the survival times for the jth member of the
ith family followed an exponential distribution with
hazard W iλ0. W i had a gamma distribution F (W; α)
with a mean of 1 and variance 1/α. For all simu-
lations, the independent competing risks of mortality
were modelled by a Weibull distribution, S(t ; λ, ρ) =
e xp (−λt )ρ , with a median of 70 and a standard devi-
ation of 10, which correspond to the scale parameter
λ = 0.014 and shape parameter ρ = 8.21. Accounting
for such competing risks, we obtain the cumulative ab-

solute risk to age t as

F (t ) =
∫ t

0

∫ ∞

0
yλ0 exp(−λ0yx)d F (y; α)S(x; λ, ρ)d x.

We simulated a population of 10000 families each
with six family members, all assumed to be related in
the first degree, for various values of parameters α and
λ0. We chose all the cases from the simulated population,
and an equal number of unmatched controls. Note that
the model does not include covariates and the match
was random; thus sandwich estimates of the variances
are valid. Using the relatives of each proband with ap-
propriate replication for multiple probands in a family,
we fitted the marginal survival model (1), and the binary
model (2) with proband status Z as the only covariate.
It is easy to see (for example by using moment generat-
ing functions) that no familial correlation, i.e. 1/α = 0,
will result in estimates γ = 0 in (1) and (2). We thus
expect γ to decrease as α gets larger.

To compare the power of the two procedures, we used
the McNemar test of the difference in the percentage of
rejections of the null hypothesis of no familial aggrega-
tion, H0 : γ = 0.

To illustrate the importance of accounting for cor-
relations among family members in the variance calcu-
lations, we performed one simulation with 1000 repe-
titions, in which we computed the standard deviation
of the log relative risk estimate, firstly by treating the
data as independent and secondly by using the robust
sandwich estimate.

Results

Simulations

We present data on the power, mean log relative risk
and log odds ratio estimates based on independent sim-
ulation studies with 1000 replicates, each for various
choices of baseline hazard λ0 and α (Table 1). As men-
tioned previously, small values of α correspond to large
variation in frailty and large intrafamilial correlation. For
fixed λ0, the mean log relative risk estimate increases
from about 0.16 for α = 5 to 1.1 for α = 0.5, and
power increases as α decreases accordingly. For the frailty
to induce a two-fold proband effect on the hazard of
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Table 1 Mean log relative risk and log
relative odds in 1000 simulations (mean
standard error in parenthesis) together
with number of rejections of H0 : γ = 0

λ0 α F (70)a Survival Model Binary Model
log relative risk # rejected log odds ratio # rejected

0.000143 5.003 0.00 0.160 (0.392) 169 0.161 (0.323) 165
0.000143 2.00 0.09 0.394 (0.248) 380 0.397 (0.253) 376
0.000143 1.5 0.09 0.512 (0.243) 566 0.515 (0.248) 559∗
0.000143 1.00 0.09 0.693 (0.238) 801 0.697 (0.242) 799
0.000143 0.5 0.08 1.125 (0.229) 995 1.135 (0.234) 995
0.0004 6.0 0.00 0.155 (0.093) 404 0.158 (0.097) 387∗
0.0004 3.0 0.23 0.285 (0.091) 827 0.289 (0.095) 817∗
0.0004 2.0 0.22 0.414 (0.090) 986 0.421 (0.095) 984
0.0004 0.5 0.19 1.124 (0.089) 1000 1.132 (0.084) 1000
0.00073 6.0 0.38 0.156 (0.052) 799 0.161 (0.056) 769∗
0.00073 5.0 0.37 0.189 (0.055) 913 0.194 (0.056) 892∗
0.00073 2.0 0.35 0.415 (0.0514) 1000 0.428 (0.056) 1000
0.00073 1.0 0.33 0.714 (0.051) 1000 0.740 (0.056) 1000
0.00073 0.5 0.29 1.142 (0.059) 1000 1.188 (0.070) 1000

a cumulative absolute risk to age 70
∗ significantly different number of rejections between the models (p ≤ 0.01 for
McNemar test)

disease in relatives, α must be less than 1.0, correspond-
ing to Var (W) ≥ 1.0 (Table 1).

The other factor that affects power and the precision
of the log hazard ratio estimates is the number of un-
censored events (δi j = 1). The value of λ0 = 0.000143,
which corresponds to a low cumulative absolute risk up
to age 70, is associated with lower power and wider av-
erage standard errors of the log relative risk estimate than
are the values λ0 = 0.0004 and λ0 = 0.00073 (Table 1).

Very similar results (Table 1) are observed for the
GEE analysis of binary outcomes from model (2). The
mean log odds ratio estimates are very slightly larger
than the corresponding mean log hazard ratio estimates
from model (1), however. This result is not surprising,
because the odds ratio from a single 2 × 2 table exceeds
the corresponding relative risk. The power of the analy-
sis of binary outcomes was less than that from analyzing
the survival data in every case, and the difference in
power was statistically significant based on a McNemar
test for five parameter settings (Table 1): λ0 = 0.00073
with α = 6.0 and α = 5.0, λ0 = 0.0004 with α = 6.0
and α = 3.0, and for λ0 = 0.000143 and α = 1.5. We
also repeated one of the simulations with 5000 replicates
to assess the robustness of our findings. For λ0 = 0.0004
with α = 3.0, the power of the survival method was
85.17%, and for the GEE the power was statistically sig-
nificantly lower at 83.63%. The corresponding mean log
hazard ratio and mean odds ratio estimates were 0.293

(0.0913) and 0.298 (0.0955), respectively. Not surpris-
ingly, the survival method is more powerful for more
common outcomes with small relative hazards, while
the powers of the two methods were similar for rare
outcomes.

For λ0 = 0.0004 with α = 3.0, the mean standard
deviation of the log relative risk estimate for 1000 rep-
etitions based on the sandwich estimate was 0.0912
(0.082), while it was 0.0898 (0.080) assuming indepen-
dent observations. Though the difference is small, it is
sufficient to raise the nominal test size from 0.050 to
0.054. A paired t-test demonstrated that the difference
between these estimates of standard deviations was sta-
tistically significant with p < 0.0001.

Hodgkin lymphoma (HL) and Non-Hodgkin
Lymphoma (NHL)

We studied familial aggregation of HL by assessing if
first degree relatives of probands diagnosed with HL are
at 1) an increased risk of HL, and 2) at an increased
risk of NHL. A more detailed analysis of these data is
the subject of another paper (Goldin et al. 2004). The
data consisted of a total of 15799 first degree relatives
of 5047 HL probands, and 32117 first degree relatives
of 10078 control probands. The probands were born
between 1897 and 1994. 59% of all HL cases were
male. Spouses of probands were not included in the
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Table 2 HL and NHL cases among first degree relatives of HL
case and control probands (proportions given below the counts)

relative of relative of
Diagnosed with control proband case proband

HL 18/32117 32/15799
0.06% 0.20%

NHL 70/32117 46/15799
0.22% 0.29%

analysis. Table 2 shows the numbers of HL and NHL
cases among first degree relatives of case and control
probands. Crude relative risks comparing case to control
proband are 0.20/0.06 = 3.7 for HL and 0.29/0.22 =
1.3 for NHL (Table 2).

Eighty-three family members from control families
and 86 from case families were duplicated in the data,
because they were first degree relatives of more than
one proband. Ninety-eight subjects were excluded from
the subsequent survival analysis as they were less than a
year old when they died. When not specified otherwise,
the reported CIs are based on the “sandwich” variance
estimate and asymptotic normality.

For HL, we estimated the relative hazard associated
with proband status ’case’, in a model that adjusted for
gender, to be 3.50 with 95% CI (1.97, 6.22) (95% boot-
strap CI (1.54, 5.22)), and the corresponding odds ratio
from the GEE model of binary outcomes, also adjusted

Table 3 Estimates for risk of HL among
first degree relatives and 95% confidence
intervals (CI)

Survival Model GEE odds
Variable relative risk (95% CI) ratio (95% CI)

Proband’s status
Control 1.00 (referent) 1.00 (referent)
Case1 3.50 (1.97, 6.22) 3.74 (1.29, 7.36)
Bootstrap CI2 (1.54, 5.22) (1.64, 5.44)
Gender
Male 1.00 (referent) 1.00 (referent)
Female 0.45 (0.25, 0.81) 0.50 (0.26, 0.99)
Bootstrap CI2 (0.24, 0.74) (0.25, 0.78)
Age
<39 years NA 0.39 (0.18, 0.85)
Bootstrap CI2 (0.12, 0.42)
39-53 years NA 0.10 (0.03, 0.34)
Bootstrap CI2 (0.06, 1.55)
53-66 years NA 0.23 (0.08, 0.66)
Bootstrap CI2 (0.07, 0.53)
>66 years NA 1.00 (referent)

1CI based on asymptotic normal approximation and sandwich estimate.
2CI based on empirical distribution function with B = 1000 bootstrap replications.

for age, to be 3.74 (1.29, 7.36) (95% bootstrap CI (1.64,
5.44); Table 3). Women were at a significantly lower
risk than men (Table 3). For NHL, the relative haz-
ard estimate associated with proband status ‘case’ in the
family was 1.33 (0.92, 1.94) (95% bootstrap CI (.96,
1.82)), and the corresponding odds ratio estimate was
1.31 (0.90, 1.91). Again, women were at a lower risk
than men (Table 4).

The CIs for the relative hazards based on bootstrap-
ping the matching clusters are 13% narrower for HL
than those derived from the sandwich method that re-
gards families as independent sampling units but ignores
matching (Table 3). For NHL, the bootstrap CI was 16%
narrower than the CI based on the sandwich method
(Table 4).

The large relative hazards for HL indicate strong in-
trafamilial correlative of responses, and, if this were in-
duced by a common frailty, the data in Table 1 suggest
that the coefficient of variation would need to be greater
than (0.5)−1/2 = 1.41.

To assess possible effects of the proband’s age-at-onset
on the disease risk of the relatives, we plotted three haz-
ards for the first degree relatives of probands for HL and
NHL, respectively (Figures 2 and 3): one for the rela-
tives of control probands, one for the relatives of early
age-at-onset (< 41 years) case probands, and one for the
relatives of late age-at-onset (≥ 41 years) case probands.
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Table 4 Estimates for risk of NHL
among first degree relatives and 95% con-
fidence intervals (CI)

Survival Model GEE odds
Variable relative risk (95% CI) ratio (95% CI)

Proband’s status
Control 1.00 (referent) 1.00 (referent)
Case1 1.33 (0.92, 1.94) 1.31 (0.90, 1.91)
Bootstrap CI2 (0.96, 1.82) (0.91, 1.76)
Gender
Male 1.00 (referent) 1.00 (referent)
Female 0.69 (0.48, 1.00) 0.70 (0.49, 1.02)
Bootstrap CI2 (0.56, 0.92) (0.56, 0.94)
Age
<39 years NA 1.61 (0.41, 6.34)
Bootstrap CI2 (0.67, 5.21)
39–53 years NA 4.21 (1.30, 13.69)
Bootstrap CI2 (2.18, 12.63)
53–66 years NA 17.26 (5.42, 54.95)
Bootstrap CI2 (8.21, 28.74)
>66 years NA 1.00 (referent)

1CI based on asymptotic normal approximation and sandwich estimate.
2CI based on empirical distribution function with B = 1000 bootstrap replications.
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Figure 2 Plots of hazards and cumulative risk for Hodgkin Lymphoma for the first degree relatives of control probands, for
first degree relatives of early age-at-onset (<41 years) case probands and for first degree relatives of late age-at-onset (>=41
years) case probands.

The cutoff point of 41 for the proband’s age-at-onset was
chosen as it was the midpoint of the bimodal age distri-
bution among HL probands in our population. While
Figure 2 shows a strong difference in risk of HL for rel-

atives of early versus late age-at-onset probands, it also
reveals that the proportional hazard assumption does not
hold. In fact, the hazard plots for the relatives of case
probands cross at around age 41. Thus the relatives of
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Figure 3 Plots of hazards and cumulative risk for Non-Hodgkin Lymphoma for the first degree relatives of control
probands, for first degree relatives of early age-at-onset (<41 years) case probands, and for first degree relatives of late
age-at-onset (>=41 years) case probands.

early age-at-onset cases have a higher risk early in life,
while the relatives of late age-at-onset case probands
have a higher risk later in life. For NHL a similar pattern
is observed (Figure 3), with the hazards for the relatives
of the late and early age-at-onset probands crossing at
around age 41.

To capture the potential interaction between
proband’s age-at-onset and the age-specific hazard of the
relatives, we considered a time-dependent proportional-
hazards model that allows the effect of the proband’s
age-at-onset on the hazard of a relative to be differ-
ent before and after the age of 41 years. We intro-
duced a time-dependent exposure variable, E(t ) so that
E(t ) = 1 for t < 41 and E(t ) = 0 for t ≥ 41. Each rel-
ative whose exit-age was greater than 41 years was split
into two separate observations, one corresponding to
the follow-up from the entry-age to 41 years, and one
corresponding to the follow-up from 41 years to the
exit-age. The binary exposure A was defined as A = 1
for proband’s age-at-onset < 41, and A = 0 otherwise,
leading to four exposure groups among first degree rel-

atives of case probands, (A = 0, E = 0), (A = 0, E =
1), (A = 1, E = 0) and (A = 1, E = 1).

We then fitted model (1) with Z = 1 if the proband
was a case, and X = g end e r

λ(t |X, A, E(t ), Z) = λ0(t ) exp(γ Z + β0 ZA

+β1 ZE(t ) + β2 ZE(t )A+ β3).
(4)

Similar models have been used in studies of risk fac-
tors for early onset hypertension (Liang et al. 1990).
To obtain variance estimates we employed the boot-
strap procedure described in the statistical methods
section.

Fitting model (4) to HL outcomes in the relatives, we
obtained the following estimates (with 95% bootstrap
CIs in parenthesis): γ = 1.28(−10.70, 1.84), β0 =
−0.54(−13.48, 0.00), β1 = −0.55(−2.08, 10.72),
and β2 = 1.33(−12.32, 2.76) and gender effect
β3 = −0.98(−1.67, 0.55). The wide CIs reflect the
small numbers of events among the relatives. Table 5
shows the corresponding hazard ratios for the four
exposure groups compared to the hazard for the
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Table 5 Hazard ratios for HL and NHL stratified by age of onset
of proband and relative

Age of relative Age of proband
<41 ≥ 41

HL
<41 4.55 2.05
≥ 41 2.09 3.58

NHL
<41 1.259 1.309
≥ 41 1.193 1.234

relatives of controls. For a relative of an early age-at-
onset proband the hazard ratio is 4.55 before age 41,
and 2.05 after age 41, compared to the relative of a
control. For the relative of a late age-at-onset case, the
hazard ratio is 2.09 before age 41, and 3.58 after age
41, compared to the relative of a control.

For NHL among the relatives, model (4) resulted
in the estimates γ = 0.21(−0.41, 0.64), β0 =
0.06(−0.01, 0.36), β1 = −0.03(−0.70, 0.67),
and β2 = 0.05(−0.24, 0.21), and gender effect
β3 = −0.34(0.78, 1.24). with corresponding hazards
given in Table 5. There is little evidence of deviation
from the proportional hazards assumption or that the
age-at-onset of the HL proband affects the relative risk
of NHL in the relatives.

Discussion

We have studied methods to assess familial aggrega-
tion in registry data. The basic approach is to com-
pare cancer occurrence among first degree relatives of
case probands with cancer occurrence among first de-
gree relatives of control probands. Our main analysis is
based on a marginal survival model that incorporates the
proband’s disease status as a covariate into a proportional
hazards model.

To account for dependencies in the data that arise
from complete ascertainment of the cases, which means
that more than one case proband can occur in a fam-
ily, and for intra-familial correlations of times to disease
onset, we present a bootstrap procedure based on resam-
pling matching clusters, and a computationally simpler
alternative that allows application of standard software
by treating families as independent sampling units. The
latter procedure is appropriate for unmatched data but

can lead to under or overestimation of the variance of
the estimated relative hazard when case probands are
matched to control probands.

In our data example from the Swedish Family Can-
cer Database, case probands were matched to control
probands by age, gender and county of residence. The
most important matching criterion was county of resi-
dency, which was chosen to allow for regional variability
over time in reporting of cancers to the central reg-
istry. For both HL and NHL, the bootstrap confidence
intervals were narrower than the confidence intervals
based on the sandwich estimates of the variance. The
narrower bootstrap confidence intervals reflect the fact
that the bootstrap accounts for the matched sampling.
Therefore, if matching has been used, we recommend
the bootstrap procedure with resampling of matching
clusters. For unmatched designs, regarding families as
an independent sampling unit is appropriate.

In principle it is possible to account for the match-
ing of case and control probands using a robust variance
estimate, by summing over the score contributions cor-
responding to a matching cluster instead of the family.
However, standard software cannot readily be used if
one wishes to accurately account for various layers of
dependence within the matching cluster. Similarly, the
bootstrap can accommodate an unmatched case-control
design by resampling families as an independent unit in-
stead of matching clusters.

Our small simulation study showed that the log rel-
ative hazards estimated from the survival model are
very similar to the log odds estimated from binary out-
comes, though when the disease becomes more com-
mon, the log relative hazards are noticeably smaller than
the log relative odds estimates (Table 1). In our exam-
ple the coefficient of variation of the frailty needed to
be 1.0 or more to induce a relative hazard of 2.0 or
more, comparing risks associated with case and con-
trol probands. For the more common disease scenario
with such relative hazards, the survival analysis tended
to be slightly more powerful than the binary data anal-
ysis. Survival methods also control for a potential bias
from unequal follow-up times for relatives of case ver-
sus control probands. The survival methods are thus
preferable to the GEE approach for detecting familial
aggregation.
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Our simulations also illustrate that ignoring familial
dependencies leads to small, but statistically significant,
underestimation of var(γ̂ ).

We applied the methods to a data set of first degree
relatives of Hodgkin lymphoma probands and found a
significantly increased risk of HL in relatives of case
probands. Men had higher risk than women (Table 3).
We also observed an increase in risk of NHL among
relatives of HL probands, but this increase was not sta-
tistically significant.

Incorporating a time dependent indicator for age,
E(t ), as well as an indicator for the age-at-onset of dis-
ease in the proband, and appropriate interaction terms,
allows us to assess effects of age-at-onset of the proband
and to study variation in risk according to the ages of
the relatives. To account for dependencies between age-
at-onset of the case proband and the relatives, Shih &
Chatterjee (2002) used the Clayton model for survival
outcomes in matched case-control family studies, and
Hsu et al. (1999) derived a set of estimating equations by
establishing a connection between the cross ratio func-
tion and the relative risk function, in a stratified pro-
portional hazards model. Our analyses indicate that the
relative risk of HL is higher among early age-at-onset
HL cases, and that the relative risk declines in older
relatives of early age-at-onset probands. For later age-
at-onset probands, the relative risk among relatives is
higher in older (age ≥ 41) rather than younger relatives
(Table 5). No such deviation from proportional hazard
was found for NHL (Table 5), but further analyses are
planned to examine risks of NHL in relatives of NHL
probands.
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